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A simple theoretical model of the thermal bar is derived on the basis of heat budget 
equations for the following three zones of a wedge-shaped water basin warmed from 
above: (i) stably stratified shallow warm-water zone; (ii) vicinity of the bar; (iii) 
convectively mixed deep cold zone. In contrast to the traditional approach, 
advective warming of the vicinity of the bar and associated facilitating of the 
thermal bar propagation are taken into account. Theoretical predictions are 
compared with the data of lacustrine and laboratory measurements taken from 
current literature. New laboratory experiments have been carried out to examine the 
laminar regime of the thermal bar. 

1. Introduction 
The nature of the thermal bar is as follows. In spring, after the ice breaks in lakes, 

water warming starts. The heat flux passing into the water is determined mainly by 
meteorological factors. It varies comparatively weakly in the horizontal direction. 
Therefore the shallow near-shore zone of a water body is heated quicker than the 
offshore deep-water zone. The temperature field becomes horizontally inhomo- 
geneous. Owing to the singularity of the equation of state of fresh water, 
stratification of density on both sides of the isotherm T = T,, corresponding to the 
maximum density, appears to show opposite behaviour : hydrostatically stable in the 
shallow zone and unstable in the deep-water zone. In the vicinity of the isotherm 
T = T, double-cell convection develops with a heavy descending current in the narrow 
zone between the cells. The related frontal interface is called the thermal bar. In  the 
course of warming of the reservoir, the thermal-bar region is displaced further from 
the shore. This process proceeds until the temperature of the cold deep-water zone 
reaches the value of T,. 

A similar phenomenon may be observed during autumn if the weather is calm : the 
shallow near-shore zone is cooled quicker than the offshore deep-water zone. Its 
temperature drops below the temperature of density maximum earlier. Further 
cooling of the lake, maintaining the thermal convection regime in the deep-water 
zone, leads to the establishing of hydrostatically stable stratification in the shallow 
water. The descending current, i.e. the thermal bar, also occurs in the vicinity of the 
isotherm T = T,. 

The phenomenon was discovered more than a hundred years ago by Forel (1880). 
He observed it in Lake Leman and gave a quite correct qualitative explanation of its 
physical nature. The term itself, thermal bar, belongs to Forel too. For almost half a 
century this phenomenon remained in oblivion. Interest in it was revived by 
Tikhomirov (1959, 1963, 1982) who was the first to study the thermal-bar region in 
detail, using hydrological measurements, aerial photographs and chemical analysis 
of lake water samples. At present, the main source of information on thermal bars in 

2 FLM 236 



28 S. S.  Zilitinkevich, K .  D. Kreiman and A .  Yu. Terzhevik 

FIQURE 1. The thermal bar in Lake Ladoga, 30 May 1959 (photograph by Tikhomirov). 
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FIGURE 2. South-north cross-section of the temperature field in Lake Ontario early May, 1965, 

after Rodgers ( 1966). 

the USSR lakes is his book (Tikhomirov 1982). He observed that the near-bottom 
horizontal currents spread sideways from the bar, while the near-surface ones 
converge towards it. This latter phenomenon often makes the bar line visible to the 
naked eye: it collects surface flakes of foam, plankton, water plants and pollution 
films. A photograph of such a line on the surface of Lake Ladoga is shown in figure 
1. Since the mid-1960s experimental studies of thermal bars have been carried out by 
American and Canadian groups in the Great Lakes of North America (Rodgers 1966, 
1968). A temperature section of Lake Ontario is shown in figure 2. 

Experiments on modelling thermal bars have been performed in a wedge-shaped 
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FIGURE 3. Distribution of temperature and current velocities in the laboratory experiment on a 
thermal bar, after Elliott & Elliott (1970). The dashed curves denote isoterms ("C); the solid lines, 
horizontal velocity profiles. The arrows show distances travelled by fluid particles per minute. 

laboratory tank (Elliott & Elliott 1969, 1970). Figure 3 presents distributions of 
temperature and current velocities from these. Comparing it with figure 2, it is easy 
to notice the general similarity between the laboratory and lacustrine isotherm 
pictures. 

Not many theoretical investigations of thermal bars have been carried out. 
Numerical models have been proposed (Csanady 1970; Huang 1972 ; Bennett 1971), 
based on two-dimensional momentum and heat-transfer equations, including 
nonlinear advective terms and turbulent exchange terms. The latter were expressed 
by means of horizontal and vertical turbulent viscosities and turbulent heat 
conductivities. Fitting of these coefficients allowed the temperature and current 
velocity fields to be obtained (Bennett 1971). Attempts were also made to explain the 
temperature regime during bar development by considering different versions of one- 
dimensional heat-transfer equations (Elliott & Elliott 1970 ; Elliott 1971 ; Sundaram 
1974). 

The main question which should be answered by a theoretical model of the thermal 
bar is: how does the front displacement proceed? A quite clear, though very 
approximate approach was proposed by Elliott & Elliott (1970), Elliott (1971) and 
Tikhomirov (1982). We consider the derivation as it applies to spring warming. The 
deep-water cold part of a lake situated in front of the thermal bar is involved in 
convection. It is assumed to be well-mixed. The water temperature there is depth- 
constant, and horizontal heat transport due to advection and turbulent exchange is 
insignificant. In this case, the heat transfer equation is easily integrated (see $2). 
Using the natural condition of no heat flux through the bottom, the solution of the 
equation is 

(1)  

where t is time, T is temperature, T, is its initial value, D is depth at  distance x from 
the shore, and Q, is kinematic heat flux through the water surface assumed 
independent oft  and z. The second equality in (1) corresponds to the case when the 
tangent of the bottom inclination angle, p = D ( z ) / z ,  is independent of 2. According 
to (l) ,  the position of the thermal bar at a particular time, i.e. the distance of 
z = 1 from the shore to the isotherm T ( x )  = T,, is expressed by 

(2) 

T -  T, = Q, t /D(z)  = Q, t l p x ,  

= &, t/(T,- T,) p. 

The main drawback of the approach seems to be that it overlooks the warming 
action of the warm, shallow-zone water on the thermal conditions in the vicinity of 
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the bar. Indeed, the descending convective jet associated with the bar leads to 
entrainment and consequently to penetration of warm water through the back side 
of the bar. It may serve as an additional heat supply to the bar zone and thus 
facilitate the displacement of the bar towards greater depths. A theoretical model 
taking this mechanism into account was suggested by Zilitinkevich & Terzhevik 
(1987, 1989) and Zilitinkevich & Kreiman (1990). Further development of the 
problem is given in the present paper. 

We will consider the simplest two-dimensional problem in a straight-line, wedge- 
shaped basin concentrating on the above-mentioned effect of dynamic warming on 
the acceleration of thermal bar propagation. Secondary effects, like the consequences 
of complicated geometry of a basin, possible action of the Coriolis force (in 
sufficiently large lakes), etc. will not be taken into account. 

It is desirable, a t  the same time, to consider in general the possibility of relating 
the empirical data taken from field measurements to that from laboratory 
experiments. That is why we will try to examine some specific features of the laminar 
thermal bar. The problem is that the convective jet forming the bar in laboratory 
tanks must be definitely laminar during a certain initial period of the experiment. 
Therefore the thermal bar in laboratory and the same bar in a natural water body 
are phenomena of a different nature, generally speaking. Is it possible to  reproduce 
the turbulent bar in the laboratory T If it is, then how can the periods of laminar and 
turbulent regimes be distinguished T Without answers to these questions, laboratory 
modelling is of very little use. 

2. Heat regimes of different zones 
We consider time-constant and horizontally homogeneous heating of water filling 

a wedge-shaped basin whose cross-section is shown on figure 4. Here the z-axis is 
directed vertically downwards and the x-axis horizontally from the shore (i.e. the 
sharp edge of the wedge) perpendicular to  the shoreline. Homogeneity is assumed 
along the other horizontal. 

As already explained in 5 1, after switching on the heater, the water temperature 
starts rising more quickly in the shallow than in the deep part of the basin. As a 
result, currents develop. If the initial temperature is below T,, then a thermal bar 
develops too. I ts  position is displaced gradually towards greater depths. So, a t  each 
moment of time three zones are distinguishable in the basin: ‘W’, the stably 
stratified shallow warm-water zone (0 < x < I ) ;  ‘C’, the deep cold-water zone 
involved in three-dimensional convection (I + A1 < x < L )  ; ‘ B ’, the bar zone between 
them (I < x < 1 + A l ) .  These zones are represented in figure 4 by segments OW’W”, 

We take the bar zone to be a subregion of our wedge whose mean temperature, TB, 
is equal to the temperature of maximum density, T, ; while its width, Al, makes up 
a standard portion of the local depth, pl .  The latter statement reflects the fact that  
the basin depth is the appropriate scale for the convection circulation cells both in 
the vertical and horizontal directions. Such a definition is expressed mathematically 
as 

where M is a dimensionless parameter : 

B/C/C//B//, W/B/B//W 

TB = T,, l + A l =  MI, (3) 

M = l + C , p ;  (4) 
C ,  is a dimensionless constant. I ts  choice will be discussed below. 
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FIQURE 4. Cross-section of a wedge-shaped basin. See text for details of the labelling. 

Assuming homogeneity of the temperature field along the shoreline, the heat 

(5 )  

transfer equation becomes 
aT aT aT aQ -+u-+w-=-- 

where u and w are components of the current velocity along the horizontal and 
vertical axes x and z, Q is the vertical kinematic heat flux. 

at ax aZ a% 

We adopt the initial condition 

T = l ' < T ,  at t = O  

Q = Q s  at z = O ,  Q = O  at z = p x ;  

and boundary conditions 

the second of these conditions means that there is no heat flux through the bottom. 
The velocity components must satisfy the continuity equation : 

the condition of a no-slip boundary at the bottom: 

w = u = O  at z=px ,  (9) 

w=O at z = O .  (10) 

and the condition of a stress-free boundary on the water surface: 

The latter condition is taken here in the form which corresponds to neglecting 
deviations of the water level from its equilibrium state. 

If we assume temperature to be constant with depth and neglect advective terms 
in ( 5 ) ,  then the solution of the problems (5)-(7) will be a temperature field given by 
(1).  Such an approximation is suitable for the cold convective zone C but obviously 
unsuitable on the other side of the bar, in the warm stratified zone W. 

We introduce, first, the averaging operator over a region G ,  namely the part of our 
wedge bounded on two sides by verticals x = Z,(t) and x = Z&t) : 
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and, secondly, the averaging operators along these verticals : 
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1 I 4  

Pli 0 

h ' , ( f )  =-I f(li,x,t)dz; i = 1,2,  

where f = f(x,z,t) is a certain function. 
Applying the operator (11) to (5 )  and taking into account (7)-(lo), we obtain 

dTG dl dl Q 
dt 'd t  2 d t  P i ( I ~ - l ~ ) - + ( T - T  ) I  >+(TG-T)l 2= ( 1 2 - l l ) ~ + F l l l - F z Z z ,  (13) 

where TG is temperature averaged over the G-region, and T, are temperatures 
averaged along verticals x = I ,  and x = l , ,  and l', and F, are dynamic horizontal heat 
fluxes through these verticals : 

TG = 17,(T), Ti = 17,(T), Ft = ITJUT); i = 1,2. (14a-c) 

Using (13), i t  is easy to derive equations to predict the mean temperature of the 
whole basin, T ,  and the mean temperatures of the warm and cold zones, T, and T,, 
as well as the heat balance equation of the bar zone, whose temperature, TB = T,, is 
constant. 

Indeed, assuming I ,  = 0, I ,  = L ,  we transform G into the whole wedge under 
consideration, so that (13) converts into the equation for the mean basin 
temperature : 

Assuming I ,  = 0, 1, = I ,  we transform G into W and obtain from (13) the following 
equation for the mean temperature of the warm zone: 

IdTw - Q, dl 
2 dt ,u dt - --Fl - ( T !  - T,) -. -- 

Here the bar-zone temperature, TB = T,, is substituted into the right-hand side for 
the temperature, T,, averaged along the vertical x = 1 ;  q is dynamic heat flux 
through this vertical. In the context of the above-stated definition of what we 
understand as the bar zone B, the approximation 

x TB = T,, (17) 

used in (16), can be interpreted as a condition which specifies the choice of the 
dimensionless constant C,. 

In  a similar way one can easily derive the equation of the bar-zone heat balance : 

(18) 
QS dl 

P 
= (N-  1, -+q - M q + A 1  - [(% - %) fM2(% - % + A l ) l  9 

and the equation for the cold-zone mean temperature : 

(19) 
d T  QS dl 
dt ,u dt 

i(L2-M2l2)> = (L-MZ)-+Ml~+~l--1M2(T,+~l-T~)1-, 

where T,+,, is the temperature averaged along the vertical x = I +  Al, &+Al is the 
dynamic heat flux through this vertical. 
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The mean temperatures under consideration must satisfy the requirement of a net 

(20) 
heat balance : 

L2T = Z2Tw + (M2 - 1) PT, + (L2 -M2Z2) 7;. 

So only three of the equations (15), ( l6),  (18), (19) are independent. 
Integrating the continuity equation (8) from the surface to the bottom, taking due 

account to the boundary conditions (9) and (lo),  we find that the total current 
through any vertical section x = lt is equal to zero: rrdr = 0. 

Therefore, if temperature does not change with depth, the dynamic heat flux Fi is 
also equal to zero, according to its definition given by (14c). The bar zone B is 
temperature-homogeneous. The adjoining cold zone C is well-mixed in the vertical 
direction owing to convection, so that temperature here is depth-constant. Hence, 
temperature is also depth-constant at the interface between B and C (at x = I + Al) ,  
i.e. the dynamic heat flux through the interface is negligible: 

&+dl = 0. 

The approximate vertical homogeneity of temperature in zones C and B can be 
seen in the empirical temperature sections (figures 2 and 3). Also, the dynamic 
transport across the thermal bar was estimated as negligibly small from observations 
of natural tracers (Hubbard & Spain 1973): when fluorescent water was added to 
inflows, fluorescence appeared in the stably stratified shallow zone and probably also 
the bar zone, but practically none penetrated into the convectively mixed, deep- 
water zone. 

By virtue of (22) the heat regime of zone C can be considered independently of the 
remaining part of the basin. This means that the temperature distribution in C is 
described by (1).  Its averaging over the whole zone C gives 

T, = T, + 2Qs t / ( L  +MI) p. (23) 

This expression satisfies the reduced version of (19) at &+Az = 0. 
Equation (15), maintaining the initial condition T = T, at t = 0, gives 

T = T, + 2Q, t /Lp .  (24) 

We substitute (3), (4), (23), (24) into (20) to obtain 

T,-T, = 2MQst/lp-W(Tm-T,). 

It now remains to determine the dynamic heat flux Fz. Then the system of equations 
(16), (25) will be closed. 

The initial condition for Z is 
Z = O  at t = 0 ,  (26) 

which means that the thermal bar originates at the shore edge. 

3. Horizontal dynamic heat flux 
According to figures 2 and 3 and all other available experimental data (Rodgers 

1966, 1968; Elliott & Elliott 1969, 1970; Tikhomirov 1982), isotherms are more or 
less horizontal within the stably stratified warm zone W almost to the boundary with 
the bar zone B. It is evident that the strong hydrostatic stability in W is manifested 
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in the suppression of the vertical turbulent exchange, while the horizontal advective 
transport appears to be, on the contrary, forced. As a result, some sort of complete 
mixing takes place in the horizontal plane. If so, then near the interface between W 
and B, the scales of both vertical and horizontal temperature differences are 

6Tv = 6Th = Tw - T,. (27) 

The horizontal dynamic heat flux, F,, is generated by penetration of water from W 
into B. It can be estimated as proportional to the horizontal temperature difference 
scale, 6Th, and the descending-current velocity scale, w.  That is why for either a 
turbulent or laminar regime the following expressions are valid : 

where C, and C, are different dimensionless constants, both known to be much less 
than unity (see Turner 1973, chapter 8;  Golitsyn 1980). 

Now we have to  determine the vertical velocity scale, w.  We use the quadratic 
form of the equation of state for fresh water: 

where p is water density, p, is its maximum value corresponding to the temperature 
T, = 277 K, a = 1.65 x KP2. Taking into account (30) ,  the characteristic scale of 
the buoyancy acceleration, g’, is defined in terms of the vertical temperature 
difference : 

where g is gravitational acceleration. 

forces in the momentum equation together with (31)  lead to 

g‘ = gadP,, (31) 

In the turbulent regime, the assumption of a balance between buoyancy and inertia 

w = (gapZ)i6Tv. (32) 

F, = Ct(gapZ)~(Tw-T,)2. (33) 

Then, using (27) and (28) ,  the horizontal dynamic heat flux is expressed as 

In  the Eaminar regime, the vertical velocity scale, w, is evaluated from the 
alternative assumption of a balance between buoyancy and viscosity forces, once 
again using (31) ,  resulting in the following expression : 

w = (ga/v)  (PO2 sT2, 
and then, using (27) and (29) ,  

(34) 

4 = Ct(ga/v) (p02 (Tw-Tm)3. (35) 

A generally equivalent assumption of a balance between the convective generation 
of kinetic energy and its viscous dissipation was used by Golitsyn (1980) to derive the 
following expression for w in the general case of laminar convection: 

Here a,  x 9 is non-dimensional constant, K is molecular heat conductivity, d is the 
liquid layer thickness, Ra and Nu are the Raleigh number and Nusselt number, 
respectively : 

R a = - ,  g’d3 N u = -  F,d 
KV KST~ ’ 
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v is molecular viscosity. Applying (36) and (37) to our case, i.e. substituting therein 
d = pl and 4 = C, WST,, we immediately obtain (34). 

It is known that a laminar convection regime is replaced by a turbulent regime 
when the Raleigh number exceeds 8 certain critical value, Rat. In the case of 
convection above a heated surface this value is 14000Pr0.6, where Pr = V / K  is the 
Prandtl number (Turner 1973, chapter 7).  Hence for water Rat is of order lo6. 

According to (37a), the condition for a thermal bar becoming turbulent is when it 
is beyond the following critical depth : 

Taking Rat x lo6 and (Tw-Tm) x 4 K, (38) gives a tentative estimate of d,  of the 
order of a few centimetres. So the answer to the first question raised at the end of the 
Introduction is obtained: the turbulent regime of the thermal bar can definitely be 
realized in the laboratory. 

4. Propagation of the bar 
In the previous sections we derived two alternative closed systems of equations 

in the unknown variables : 1, T, and &, namely (16), (25), (33) for the turbulent 
regime of a thermal bar and (16), (25), (35) for its laminar regime. Both systems are 
to be solved under the initial condition (26). 

4.1. Turbulent regime 
We use the external parameters Qs, ga, p, T, - T, to compile the following length- and 
timescales : 

Physically, I ,  is the characteristic distance covered by the thermal bar during the 
characteristic period t , .  According to (39), the displacement-rate scale of a thermal 
bar appears to be equal to l J t ,  = Qs/p(Tm-G), which is the same scale as implied 
in (2). 

We introduce dimensionless variables : 

7=t/t,, h = l / l , ,  8 =  (Tw-Tm)/(Tm-q) ,  @ = & / Q s .  (40) 

Equations (16), (25) and (33) take the form 

The problem of thermal-bar propagation is reduced to integrating the equation 
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under the initial condition 
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h=O at T = O .  

The solution of the problem has the following asymptotes a t  -7 4 C;2 

and a t  7 4 C;2 x 10-1 : 
27 - MA + C ~ k M - ~ h r ,  

(44) 

(47) 

8 ~ ~ 1 h - f .  (48) 

These expressions show the following bchaviour of the solution : in the course of 
time, the dimensionless rate of bar displacement, dh/dr, monotonically increases 
from (2M-1) /M2 to  2 / M ;  the dimensionless temperature of the warm zone, 8, 
monotonically decreases from M 2 / ( 2 M -  1) to zero ; and the dimensionless horizontal 
heat flux, CP, (i.e. the ratio of the total horizontal flux, $4, through the interface 
between zones W and B to the total vertical flux, EQ,, incoming through the free 
surface of the zone W) monotonically increases from zero to unity. 

Equations (41)-(43) and (45)-(48) contain one dimensionless constant C, and one 
dimensionless parameter M including another constant C,. The latter is the ratio of 
the bar-zone width to the basin depth in the zone. It is supposed to be of the order 
of unity. Then, if ,u < lo-', we can adopt M = 1 in all equations from (41) to (48), so 
that the exact value of C, is not required. On the other hand, the solution depends 
considerably on C,. The empirical estimate C, = 0.008 will be obtained in the next 
section. 

The solution of the problem (41), (42), (44) a t  M = 1 and C, = 0.008 is shown on 
figure 5 below. It is obtained numerically using asymptotic expressions (45), (46) a t  
small r to avoid thc singularity in the equations at r = 0. Sensitivity of the solution 
to the choice of C, is as follows: the difference A--7, i.e. the 'correction term' 
responsible for the dynamical warming effect on the acceleration of thermal-bar 
propagation, appears to  be approximately linearly dependent on C,. 

4.2. Laminar regime 
As mentioned in the Introduction, investigation of the laminar thermal bar is needed 
for proper interpretation of laboratory experiments. We are interested, first, in the 
transition from the laminar to the turbulent regime, which is why it is convenient in 
further considerations to keep the same scales and dimensionless variables as in 54.1, 
namely those determined by (39) and (40). 

Then (16), (25), (35) take forms similar to (41), (42), with the one exception of the 
formula for the dimensionless horizontal dynamic heat flux, CP. This is now expressed 
as 

= € ~ e 3 ,  (49) 

where E is the following dimensionless number : 

compiled from the external parameters. 
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From (ala), (42) and (49), the following equation is derived 

It should be integrated using the initial condition (44). 
We analyse below the data from laboratory experiments (Elliott & Elliott 

1970; Kreiman 1989). Typical values of governing parameters were: ,u x 
&, z 10P K cm s-l. Substitutingthesevaluesinto (50)andadoptingtheupperestimate 
of C, 4 (which follows from Golitsyn's estimate of the constant a, x 9 in (36)) 
we obtain E < This limitation permits a solution of the problem (51), (44) to  be 
sought in the form of a power series in E .  Keeping the first two terms of such a series 
at T < E-;,  we obtain 

2M- 1 1 
A x -7+- 4M- 6T3, 

Mz 

ox-- m2. 
M2 2 M 5  

2M- 1 (2M- 1 ) Z  (4M- 3) (53) 

At ,u < lo-' we can take M = 1 here. 
Solution of the problem under consideration a t  very high values of T is of no 

interest since, as T increases, the dimensionless distance A,  the water depth in the bar 
zone d =,&A, and the Raleigh number Ra, determined by (37a), also increase. 
When Ra exceeds its critical value (Ra x lo6), the thermal bar becomes turbulent. 
Then (34), (35) and all their consequences, including (51), no longer make physical 
sense. 

The condition for turbulence, Ra > Rat, can be replaced by any one of the 
following inequalities : 

d > d,,  1 > 1, = d,/p, A > A, = d,/,ul*, T > T,,  (54) 

where d,  is the critical depth determined by (38) and rt is the critical dimensionless 
time. The latter can be obtained, at sufficiently small E ,  as a root of the cubic 
equation 

E 2M- 1 
7,3+---7,-At = 0, 

4M-3  M2 (55) 

and at any E ,  from the numerical solution of the problem (51), (44). 
So, the thermal bar is laminar while 7 < 7,. Its  movement is described by the 

solution of the problem (51), (44) or, approximately, by (52). At T > 7t, the bar 
bccomes turbulent. Then its movement is governed by (43) which should be solved a t  
the initial condition 

A = A, a t  T =7,.  (56) 

The dimensionless mean temperature of the warm zone, 0,  is expressed by (42a) in 
both regimes. 

5. Experimental data 
The theoretical model of the turbulent thermal bar given above contains the 

dimensionless constant C,. Our empirical estimate, used in $4, is based on very scanty 
information. The data from two lakes and two laboratory experiments, all that  
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Data source and reference 

Ontario (Rodgers 1966) 3 x  6 x  2 1 1  km 10days 4.9 
Ladoga (Tikhmirov 1968) 2 x 10-3 4 x 10-3 0 17 km 33 days 6.4 
Laboratory experiments 9 x 10-2 Y x 10-3 0 121 cm 65 min 6.2 

(Elliott & Elliott 1969, 1970) 9 x lo-' 12 x 0 121 cm 52.5min - 
TABLE 1.  External parameters and measured characteristics of the thermal bar 

Data source 1, (cm) t ,  ( s )  h 0 7 

Ontario 5144 5144 213 0.45 168 
Ladoga 482 965 3527 0.60 2955 

0.0268 1.072 4515 0.55 3638 { 0.0476 1.429 2542 - 2204 Laboratory experiments 

TABLE 2. Length- and timescales and dimensionless characteristics of the thermal bar 

appeared to be available, are given in table 1. It includes the governing parameters, 
p, Q, and T,, and the following observed Characteristics of the thermal bar:  the 
distance which it travelled, Al, the time of its motion, At, and the mean temperature 
of the warm zone, T,, achieved by the time the bar covered the distance Al. 

Table 2 presents evaluations based on the data of table 1,  namely length- and 
timescales, 1, and t , ,  and dimensionless variables, h = AZ/l*, 8 = (Tw - Tm)/(Tm/To) 
and time, 7 = At/ t , ,  calculated using (39), (40). 

In the graph of 1 versus t in Elliott & Elliott (1969, 1970) the initial moment of time 
corresponds to half an hour after the start of heating. Also, the cross-section of the 
experimental tank represents not a wedge but a trapezoid. Therefore, to interpret 
their experimental results in terms of our solution, we were obliged, first, to add 
30 min to the time specified in the graph and, second, to  consider as A1 the distance 
to the bar line from the imaginary origin of the wedge angle, rather than from the 
edge of the vessel (i.e. to add 11 ern to the distance specified on the graph). 

Certainly there is no a priori confidence that the laboratory data correspond to  the 
turbulent regime. Nevertheless, we plot them on figure 5 together with the lacustrine 
data from table 2 and the theoretical curves obtained from numerical solution of the 
'turbulent problem' (41), (42), (44) a t  M = 1 and C, = 0.008. This value of C, is 
specified by fitting the 47) curve to the Lake Ladoga point. 

It is seen from the figure that the curve agrees fairly well with all other empirical 
points. So the final stage of the thermal bar development in the Elliott & Elliott 
(1969, 1970) laboratory experiment was probably turbulent. Equation (2) at large 7 
underestimates significantly the distance covered by the thermal bar. The O(r) 
theoretical curve is quite well confirmed by two of the empirical points (corresponding 
to Lake Ladoga and laboratory experiments), while the Lake Ontario point lies much 
lower than the theoretical estimate. This disagreement may be caused by a 
comparatively small overestimate of initial temperature, To, in Lake Ontario. 

Verification of the proposed theoretical model of the laminar thermal bar is based 
on the laboratory experiments of Kreiman (1989). The thermal bar was modelled in 
a wedge-shaped basin with a maximum depth of 15 cm and a tangent of the bottom 
inclination angle of ,u = 0.107 at  different values of the heat flux Q,. Temperature 
changes after switching on the heater were measured. The experiments were carried 
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FIGURE 5. Dimensionless distance travelled by the bar, A = AZ/Z,, and dimensionless warm-zone 
temperature, 19 = (T! - T,)/(T, - q), versus dimensionless time, 7 = At/t,. Solid lines are plotted 
using the solution of the ‘turbulent problem’ (41), (42), (44) atM = 1 and C, = 0.008; dashed line, 
using (2). Empirical points correspond to table 2. 

Experiment no. 1 2 3 4 5 6 

&, ( los K cm 8-l)  3.3 4.7 5.1 5.5 5.4 5.9 
(T, - To) (K) 1.7 1.3 2.0 2.4 1.5 2.0 
t, (8) 3.91 12.35 3.71 2.49 9.39 4.63 
1, (cm) 0.07 0.41 0.09 0.05 0.31 0.13 

TABLE 3. External parameters and time- and lengthscales in laboratory experiments 
(Kreiman 1989) 

out in late autumn. The windows in the laboratory hall were wide open, which kept 
the air temperature between 5 and 7 O C ,  close to the water temperature in the 
laboratory tank. The tank was made of wood, i.e. of heat-isolating material. All this 
minimized heat exchange through the tank bottom and side walls. A description of 
the laboratory apparatus and the measuring tools employed is given in Kreiman 
(1989), which also contains experimental data on the dependence of I on t in six 
experiments (see table 3). 

The same data represented in terms of the dimensionless variables (40), i.e. the 
dependence of h on T ,  are shown in figure 6 together with the theoretical curves 
obtained from the numerical solution of (51), (44) taking the appropriate values of 
the dimensionless number E .  To determine E in each experiment, it was necessary to 
ascertain the dimensionless constant C,. I ts  optimum value, corresponding t o  the 
theoretical curves in figure 6, was C, = 1.2 x 

The dotted line on figure 6 shows the ‘turbulent solution’, i.e. the solution of (43), 
(44) at C, = 0.008. The overwhelming majority of the empirical points lie below the 
‘turbulent curve’. This is quite natural, because heat exchange between the W and 
B zones is obviously less effective in a laminar regime than in a turbulent one. 

The dependence of 0 on T using the data of Kreiman’s (1989) experiments and 
corresponding theoretical curves are represented in figure 7. Solid lines are obtained 
using (42a) and the solution of (51)’ (44) with C, = 1.2 x the dotted line is from 
the ‘turbulent solution’ a t  C, = 0.008. 

Now we can answer the second question concerning the value of laboratory 
experiments, namely how to distinguish the laminar and turbulent periods of 
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FIGURE 6. Dimensionless distance travelled by the thermal bar, A = Z/Z*, versus dimensionless 
time, 7 = t / t , .  Empirical points correspond to  the data  of laboratory experiments given in table 3. 
Solid lines are plotted using the solution of the ‘laminar problem’ (51), (44) at C, = 1 . 2 ~  lo+; 
dashed line, using the solution of the ‘turbulent problem ’ at C, = 0.008. Numbers at symbols and 
curves identify individual experiments. 

thermal bar development. The indication that the bar is becoming turbulent should 
be the coincidence of the empirical dependences of A on T and 13 on T with the 
theoretical ‘turbulent curves ’. Incidentally: according to this criterion, figure 5 
shows that in the experiments of Elliott & Elliott (1970) the bar actually became 
turbulent. 
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FIGURE 8. Schematic traces of sinking pigment particles: ( a )  at the ‘slow’, ( b )  at the ‘fast’ 
stage of thermal bar development. 

Figure 8 shows schematically the results of visual observations on traces of sinking 
crystals of potassium permanganate which were dropped on the water surface in the 
course of the experiments. At  the first ‘slow ’ stage of propagation of the thermal bar, 
no noticeable asymmetry was observed between the circulation cells in the warm and 
cold regions (figure 8a). At the second, ‘fast’ stage starting 3 M O  min from the 
beginning of an experiment, the frontal interface between the cells acquired an 
inclined position: a tongue of warm water slips onto the lower cold layer. In the 
process, the coloured traces acquired an S-shaped form (figure 8 b )  and started 
dissipating, especially near the free surface. This probably indicates the beginning of 
turbulence. Such a pattern fully conforms to the data on thermal bar propagation 
presented in figure 6 :  at the ‘slow’ stage (7 < lo3) there is no noticeable heating of 
the bar zone owing to the contact with the warm zone, so that A = r. A t  the ‘fast’ 
stage, heating takes place, resulting in the acceleration of thermal bar propagation, 
so that A > r. According to figure 8, this stage can be characterized as a 
laminar-advective one. 

The most appropriate problems to solve by means of laboratory experiments 
similar to those carried out by Elliott & Elliott (1969, 1970) and Kreiman (1989) are 
as follows: (i) more precise determination of the universal constant C , ;  (ii) 
determination of the critical Raleigh number for a thermal bar (we now use only an 
apriori estimate on the order of magnitude, Rat - log) ; (iii) more careful examination 
of thermal bar propagation and, especially, the temporal behaviour of the warm-zone 
mean temperature. New experiments must be carried out in considerably deeper 
wedge-shaped tanks than before (with a maximum depth of a t  least 25-30 cm). 

Further advancement in understanding the nature of the thermal bar requires 
extensive experimental work in lakes, including examination of temperature cross- 
sections and current systems in situ as well as remote sounding of the water surface 
temperature distribution. 

The authors would like to thank Dr A. I. Tikhomirov for useful discussions and for 
his kind permission to reproduce his unpublished photograph of the thermal bar. 
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